"Bernoulli distribution" meaning in English

See Bernoulli distribution in All languages combined, or Wiktionary

Noun

Forms: Bernoulli distributions [plural]
Etymology: After Swiss mathematician Jacob Bernoulli (1654—1705), one of many noted mathematicians of the Bernoulli family, who made important contributions to the field of probability. Head templates: {{en-noun}} Bernoulli distribution (plural Bernoulli distributions)
  1. (statistics) A discrete probability distribution that represents the result of a single trial, taking value 1 with "success" probability p and value 0 with "failure" probability q=1-p. Wikipedia link: Bernoulli distribution, Bernoulli family, Jacob Bernoulli Categories (topical): Statistics Related terms: Bernoulli random variable Translations (distribution): alternativní rozdělení [neuter] (Czech), Bernoulliho rozdělení [neuter] (Czech), Bernoullin jakauma (Finnish), Bernoulli-Verteilung [feminine] (German), Bernoulli-eloszlás (Hungarian), Bernoulli-dreifing [feminine] (Icelandic), tvíliðudreifing [feminine] (Icelandic), tvíkostadreifing [feminine] (Icelandic), distribuție Bernoulli [feminine] (Romanian), распределение Бернулли (raspredelenije Bernulli) [neuter] (Russian)

Inflected forms

{
  "etymology_text": "After Swiss mathematician Jacob Bernoulli (1654—1705), one of many noted mathematicians of the Bernoulli family, who made important contributions to the field of probability.",
  "forms": [
    {
      "form": "Bernoulli distributions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Bernoulli distribution (plural Bernoulli distributions)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Czech translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Hungarian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Icelandic translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Romanian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Russian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Statistics",
          "orig": "en:Statistics",
          "parents": [
            "Formal sciences",
            "Mathematics",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "text": "1977 [Wiley], Jean Dickinson Gibbons, Ingram Olkin, Milton Sobel, Selecting and Ordering Populations, 1999, Society for Industrial and Applied Mathematics, Unabridged corrected republication, page 103,\nSince both of these distributions involve the same parameter p, the problem under consideration here may be called either selection of the best Bernoulli distribution or selection of the best binomial distribution."
        },
        {
          "text": "1985, R. R. Kinnison, Applied Extreme Value Statistics, Battelle Press, page 26,\nA critical factor in the use of Bernoulli distributions is that the parameters of the distribution are known constants."
        },
        {
          "text": "2000, A. Berny, Selection and Reinforcement Learning for Combinatorial Optimization, Marc Schoenauer, Kalyanmoy Deb, Günther Rudolph, Xin Yao, Evelynne Lutton, Juan Julian Merelo, Hans-Paul Schwefel (editors), Parallel Problem Solving from Nature-PPSN VI, 6th International Conference Proceedings, Springer, page 601,\nIn this paper however, we will only consider the family of Bernoulli distributions."
        }
      ],
      "glosses": [
        "A discrete probability distribution that represents the result of a single trial, taking value 1 with \"success\" probability p and value 0 with \"failure\" probability q=1-p."
      ],
      "id": "en-Bernoulli_distribution-en-noun-SBGjZKds",
      "links": [
        [
          "statistics",
          "statistics"
        ],
        [
          "probability distribution",
          "probability distribution"
        ]
      ],
      "raw_glosses": [
        "(statistics) A discrete probability distribution that represents the result of a single trial, taking value 1 with \"success\" probability p and value 0 with \"failure\" probability q=1-p."
      ],
      "related": [
        {
          "word": "Bernoulli random variable"
        }
      ],
      "topics": [
        "mathematics",
        "sciences",
        "statistics"
      ],
      "translations": [
        {
          "code": "cs",
          "lang": "Czech",
          "sense": "distribution",
          "tags": [
            "neuter"
          ],
          "word": "alternativní rozdělení"
        },
        {
          "code": "cs",
          "lang": "Czech",
          "sense": "distribution",
          "tags": [
            "neuter"
          ],
          "word": "Bernoulliho rozdělení"
        },
        {
          "code": "fi",
          "lang": "Finnish",
          "sense": "distribution",
          "word": "Bernoullin jakauma"
        },
        {
          "code": "de",
          "lang": "German",
          "sense": "distribution",
          "tags": [
            "feminine"
          ],
          "word": "Bernoulli-Verteilung"
        },
        {
          "code": "hu",
          "lang": "Hungarian",
          "sense": "distribution",
          "word": "Bernoulli-eloszlás"
        },
        {
          "code": "is",
          "lang": "Icelandic",
          "sense": "distribution",
          "tags": [
            "feminine"
          ],
          "word": "Bernoulli-dreifing"
        },
        {
          "code": "is",
          "lang": "Icelandic",
          "sense": "distribution",
          "tags": [
            "feminine"
          ],
          "word": "tvíliðudreifing"
        },
        {
          "code": "is",
          "lang": "Icelandic",
          "sense": "distribution",
          "tags": [
            "feminine"
          ],
          "word": "tvíkostadreifing"
        },
        {
          "code": "ro",
          "lang": "Romanian",
          "sense": "distribution",
          "tags": [
            "feminine"
          ],
          "word": "distribuție Bernoulli"
        },
        {
          "code": "ru",
          "lang": "Russian",
          "roman": "raspredelenije Bernulli",
          "sense": "distribution",
          "tags": [
            "neuter"
          ],
          "word": "распределение Бернулли"
        }
      ],
      "wikipedia": [
        "Bernoulli distribution",
        "Bernoulli family",
        "Jacob Bernoulli"
      ]
    }
  ],
  "word": "Bernoulli distribution"
}
{
  "etymology_text": "After Swiss mathematician Jacob Bernoulli (1654—1705), one of many noted mathematicians of the Bernoulli family, who made important contributions to the field of probability.",
  "forms": [
    {
      "form": "Bernoulli distributions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Bernoulli distribution (plural Bernoulli distributions)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "related": [
    {
      "word": "Bernoulli random variable"
    }
  ],
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Czech translations",
        "Terms with Finnish translations",
        "Terms with German translations",
        "Terms with Hungarian translations",
        "Terms with Icelandic translations",
        "Terms with Romanian translations",
        "Terms with Russian translations",
        "en:Statistics"
      ],
      "examples": [
        {
          "text": "1977 [Wiley], Jean Dickinson Gibbons, Ingram Olkin, Milton Sobel, Selecting and Ordering Populations, 1999, Society for Industrial and Applied Mathematics, Unabridged corrected republication, page 103,\nSince both of these distributions involve the same parameter p, the problem under consideration here may be called either selection of the best Bernoulli distribution or selection of the best binomial distribution."
        },
        {
          "text": "1985, R. R. Kinnison, Applied Extreme Value Statistics, Battelle Press, page 26,\nA critical factor in the use of Bernoulli distributions is that the parameters of the distribution are known constants."
        },
        {
          "text": "2000, A. Berny, Selection and Reinforcement Learning for Combinatorial Optimization, Marc Schoenauer, Kalyanmoy Deb, Günther Rudolph, Xin Yao, Evelynne Lutton, Juan Julian Merelo, Hans-Paul Schwefel (editors), Parallel Problem Solving from Nature-PPSN VI, 6th International Conference Proceedings, Springer, page 601,\nIn this paper however, we will only consider the family of Bernoulli distributions."
        }
      ],
      "glosses": [
        "A discrete probability distribution that represents the result of a single trial, taking value 1 with \"success\" probability p and value 0 with \"failure\" probability q=1-p."
      ],
      "links": [
        [
          "statistics",
          "statistics"
        ],
        [
          "probability distribution",
          "probability distribution"
        ]
      ],
      "raw_glosses": [
        "(statistics) A discrete probability distribution that represents the result of a single trial, taking value 1 with \"success\" probability p and value 0 with \"failure\" probability q=1-p."
      ],
      "topics": [
        "mathematics",
        "sciences",
        "statistics"
      ],
      "wikipedia": [
        "Bernoulli distribution",
        "Bernoulli family",
        "Jacob Bernoulli"
      ]
    }
  ],
  "translations": [
    {
      "code": "cs",
      "lang": "Czech",
      "sense": "distribution",
      "tags": [
        "neuter"
      ],
      "word": "alternativní rozdělení"
    },
    {
      "code": "cs",
      "lang": "Czech",
      "sense": "distribution",
      "tags": [
        "neuter"
      ],
      "word": "Bernoulliho rozdělení"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "distribution",
      "word": "Bernoullin jakauma"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "distribution",
      "tags": [
        "feminine"
      ],
      "word": "Bernoulli-Verteilung"
    },
    {
      "code": "hu",
      "lang": "Hungarian",
      "sense": "distribution",
      "word": "Bernoulli-eloszlás"
    },
    {
      "code": "is",
      "lang": "Icelandic",
      "sense": "distribution",
      "tags": [
        "feminine"
      ],
      "word": "Bernoulli-dreifing"
    },
    {
      "code": "is",
      "lang": "Icelandic",
      "sense": "distribution",
      "tags": [
        "feminine"
      ],
      "word": "tvíliðudreifing"
    },
    {
      "code": "is",
      "lang": "Icelandic",
      "sense": "distribution",
      "tags": [
        "feminine"
      ],
      "word": "tvíkostadreifing"
    },
    {
      "code": "ro",
      "lang": "Romanian",
      "sense": "distribution",
      "tags": [
        "feminine"
      ],
      "word": "distribuție Bernoulli"
    },
    {
      "code": "ru",
      "lang": "Russian",
      "roman": "raspredelenije Bernulli",
      "sense": "distribution",
      "tags": [
        "neuter"
      ],
      "word": "распределение Бернулли"
    }
  ],
  "word": "Bernoulli distribution"
}

Download raw JSONL data for Bernoulli distribution meaning in English (3.8kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-10 from the enwiktionary dump dated 2025-01-01 using wiktextract (df33d17 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.